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1 Motivation and Context

The worldwide excitement that LIGO’s (advanced Laser Interferometer Gravitational wave Obser-
vatory) February announcement made has refocused the attention of many scientists and experts [1],
considering Einstein’s theory of General Relativity (GR) was put forward 100 years ago [2]. Gravi-
tational waves (GWs) are oscillations of space time produced by a changing mass distribution (like
two stars orbiting around each other) or by a massive energy release (like supernova explosions).
They are a consequence of GR and were first predicted by A. Einstein.

Until recently, GW were not possible to detect due to technological limitations. Experimental
equipment is needed to be able to detect changes in length down to 10−20 meters. On top of this
technical challenge, there was a mathematical challenge to fit the measured data with Einstein’s GR
model on the fly. Of the initial attempts to solve the Einstein equations only solutions were found for
only certain cases due to the nonlinear nature of Einstein’s GR model. Post Newtonian (PN) theory
provides approximations to GW, and Numerical Relativity (NR) provide ‘exact solutions’, but
both provide different kind of GW waveform models. Numerical solutions can still computationally
expensive, even for supercomputers, this meant that there was need to further reduce the models
without any significant loss of accuracy.

For detection and analysis we need to compute a bank of theoretical templates, i.e. waveform
models, we need around 105 templates, but it depends on the number of parameters employed to
compute the waveform and the region of parameter space to explore. Once the bank is computed
we cross-correlate each signal with the data stream from the detector. The longer the and more
complex the signal is the more expensive this process is and there is need for fast and accurate
methods for GW analysis. The work presented here will be a preliminary study to improve previous
works [3, 4] using applied mathematical techniques like bayesian compressed sensing and machine
learning techniques. These techniques come from previous work done on sparse bayesian modelling
as exemplified by the relevance vector machine [5].

The previous work begins by dividing the computation into an ‘offline’ portion, a ‘start up’
portion, and an ‘online’ portion. The ‘offline’ portion takes more time to set up the system for
fitting the data, but in the end it makes the ‘online’ time significantly shorter. The method
considers the fact that the parameter space is too large to consider so rather than evaluating
a parameter space with 1035 possibilities, for every frequency in the frequency space some key
assumptions are made. Firstly, only coalescing binary systems are considered because they produce
the strongest (highest amplitude) GWs. The parameter space is then further reduced by considering
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only combinations of binary systems which produce the strongest GWs. These assumptions and
further reduction techniques create a basis with a reduced number of vectors needed to recreate the
intended waveform. Further details of the model reduction can be found in the previous work [3].

After reducing the basis down to a more manageable size the online portion of computing the
necessary weights can be done. Computing these weights can still take some time and the resulting
weights show that many of them are effectively negligible. Thus the application of Tipping’s work is
used to further optimise the number of basis and obtain the correspondent weights. The algorithm
works to reduce the required basis vectors down by randomly assigning some to be non-zero and
then working out which ones are essential and which ones are not.

2 Methodology

In order to bring together the previous works, the results from the offline portion had to be processed
and transferred into Tipping’s Matlab code [6]. The text files generated by the ‘offline’ code were
simply be read into Matlab and reformed to create a orthogonal basis matrix along with the
waveform that I was trying to model with the basis. The data I used from the reduced parameter
space had already been reduced to an N × M matrix with N bases evaluated at M frequencies
(N < M). It also had a reduced waveform that simplified a waveform evaluated at all M frequencies
to a smoother waveform evaluated at N frequencies chosen by the greedy algorithm (see Fig. 1) [3].
Thus, I needed to choose which N frequencies the basis vectors would be evaluated at to create a
square N ×N matrix. In order to further reduce the error, I strategically choose which frequencies
were to be used in the algorithm. And finally, Tipping’s algorithm simply takes this matrix and
vector and runs through the machine learning and returns the minimum necessary weights needed
to recreate the waveform with the basis.

Reduced Waveform

Figure 1: The blue line is the original waveform and the yellow line is the reduced waveform created
by the greedy algorithm. As it is shown, the greedy algorithm smoothed out the tail end of it.
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3 Results

With the data I used (see Appendix A) I had a square basis of about 200 vectors. The algorithm
took around 6 seconds to retrieve the weights needed for both the real and imaginary parts. I
decided to choose the same frequencies that were used to reduce the waveform to create the square
matrix, but unfortunately the initial results were less than ideal as the error between the initial
waveform and the basis and weights was around 0.3. However, by analysing the waveform and
more strategically choosing which frequencies were used in the algorithm I was able to reduce the
error further to approximately 0.04. It isn’t much of an improvement, but the idea is to reduce the
number of non- zero basis as much as possible so that during the ‘start up’ and ‘online’ portions of
the algorithm time is saved by avoiding the costly calculation of weights required to fit the incoming
data.

By using all 200 basis vectors, one could solve for the exact weights needed to fit the waveform
by solving the ~h = B~w, where ~h is the vector describing the waveform, B is the square matrix of
basis vectors, and ~w is the vector of weights. When the frequencies chosen for the square basis were
the same as the ones chosen by the greedy algorithm for the waveform, then the relative error was
~h−B~w = (7.14283 × 10−12) + (2.67064 × 10−12) i, for the real and imaginary part. Unfortunately,
this same choice of frequencies resulted in an error of 0.33198+0.32871 i when the Tipping algorithm
was used — however, only 79 and 80 basis vectors (real and imaginary respectively) were non-zero
(see Fig. 2 and Fig. 3). I managed to compromise slightly by working to strategically choose which

Figure 2: Plot of the real part of the original waveform (h) in red, and the reconstructed waveform
(ĥ) in blue with frequencies that were chosen by the greedy algorithm. The vertical axis is amplitude
(meters) and the horizontal axis is normalised frequencies (Hz).
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Figure 3: Plot of the imaginary part of the original waveform (h) in red, and the reconstructed
waveform (ĥ) in blue with frequencies that were chosen by the greedy algorithm. The vertical axis
is amplitude (meters) and the horizontal axis is normalised frequencies (Hz)

frequencies to evaluate the bases at. When I did the algorithm chose 112 and 120 basis vectors
(real and imaginary) and the error was reduced to 0.0739726 + 0.0374448 i (see Fig. 4 and Fig. 5).
The increase in the number of basis vectors is not desirable, but a reduction in error is necessary.

However, by using these strategically chosen basis vectors and solving for ~h with ~h = B~w, the error
between these two was significantly higher (0.0171 + 0.0039 i). With a single order of magnitude
drop in error after a 50% increase in basis vectors that don’t ‘fit’ even if all of them are included
calls out that there may be some sort of balance between the choice of frequencies through the
greedy algorithm and my strategic way of choosing them.

The strategy on choosing which frequencies I would keep was a rough estimate based on the
characteristics of the original waveform. Essentially, the idea is to create a type of a mask to select
basis vectors that are more suitable for the waveform that I am fitting. Since the first part of the
waveform has lower frequency modes and the second part of the waveform has higher frequency
modes modulated by a lower frequency, the idea is to use fewer low frequency basis vectors and
more higher frequency basis vectors. This is because I have already been able to accurately fit
the first portion of the waveform, but I’ve been struggling to accurately fit the second portion (see
Fig. 2 and Fig. 3). I decided to make a more rigorous selection of which basis vectors were chosen
so I randomly took about 5% of the frequencies from the first 10% then I took about 10% from the
next 10% and then I took about 85% from the remaining 80%. I also used a seed of 100. While
this method did seem to produce improved results, it was a crude approach to say the least. Using
a more distributive method (something like a decaying exponential) to achieve a similar result my
be more efficient and more effective. However more work must be done in order to know for sure.
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Figure 4: Plot of the real part of the original waveform (h) in red, and the reconstructed waveform
(ĥ) in blue, with the frequencies chosen strategically. The vertical axis is amplitude (meters) and
the horizontal axis is normalised frequencies (Hz).

Figure 5: Plot of the imaginary part of the original waveform (h) in red, and the reconstructed
waveform (ĥ) in blue with frequencies that were chosen strategically. The vertical axis is amplitude
(meters) and the horizontal axis is normalised frequencies (Hz).
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Finally, the data and work done with this bayesian statistics method was with the Post-
Newtonian, TaylorF2 model [7] which retains some complexity, but it is certainly not the most
complex model out of the PN expansions. Due to the how nature of TF2 and the length of the
waveform the Tipping algorithm had a tendency to struggle to fit it in its entirety. If the waveform
were longer, and the evolution of events were more distinct, then the problem could be divided
up and worked separately. This could be effective, especially because of how quickly (and more
or less accurately) the algorithm is at reconstructing a waveform with a reduced basis. Thus by
reducing the complex waveform into smaller problems, more accuracy may be achievable. Also, the
interesting physics and information is found in the data where the amplitude is low, the frequencies
are high, and coalescing binaries are nearly merged and/or are merging. In the end, the results
of this have been positive and promising, but more work needs to be done in order to use this
technique to do gravitational wave parameter estimations.

A Appendix: Data

Here is the data (Table 1) that I used from the previous work to feed into the Tipping algorithm
(Advanced LIGO noise from http://arxiv.org/abs/0901.4936v4. Basis have been whitened):

Table 1: Data used for this analysis.

CBC 3.5PN ROQ rule Parameter Range:
Low Mass 3
High Mass 30

Data Taking:
ObsTime 2
Sampling Rate 600
First Frequency 10.0

Greedy Settings:
Tolerance 10−6

Sampling in Parameter Dimension:
Training Size 26565

Error Bounds for Noise Free Integrals:
Estimated EIM error (single functions) 5.0499 × 10−05

Estimated ROQ error (single functions) 9.1859 × 10−05
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