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1. INTRODUCTION AND BACKGROUND

The number of known exoplanets has increased dramatically over the past 20 years [1]. Along
with this increase has come a diversity of planetary arrangements. For stars with multiple ex-
oplanets, the stability of these systems can seem precarious, particularly when they are tightly
packed [1]. Yet, for these intractable many-body systems, it seems unlikely that so many would
be on the precipice of collapse, especially when the ages of these systems suggest their stability
has lasted for millions, or even billions, of years. With gravity as the only fundamental physics
governing the dynamics of the system, the stable and persistent nature of these many-body systems
calls for further understanding, especially the relationship between resonance and chaos.

1.1. The Chaotic Nature of Planetary Systems. The chaotic nature of the three body system
governed by gravity was first alluded to by Poincaré and was later characterised in the latter end
of the previous century [2]. It has therefore been established that systems with only two degrees
of freedom possess an absolute stability of motion. However, for n > 2 the motion is always
unstable in some sense [3]. As computing power became more widespread, numerical simulations
were made of many body systems (n > 2) including the solar system and later exoplanet systems.
Simulations searching to further constrain orbital elements found many systems to be on the edge
of instability [4]. Because of this, resonance was cited as a possible mechanism for maintaining
stability on the edge of collapse.

1.2. Resonance in Celestial Mechanics. Resonance occurs when the ratio between two charac-
teristics are commensurable, that is, the ratio is that of two integers. There are three kinds of
resonances involving orbits in celestial mechanics: spin-orbital resonance, the relationship be-
tween an planet’s spin and its orbit; secular resonance, the relationship between the precession in
frequencies of planets; and mean motion resonance, the relationship between the orbital period of
planets [5]. In this paper I will primarily discuss mean motion resonance and I will refer to it sim-
ply as resonance. Thus, an example of resonance is the ratio of orbital periods of planetary bodies.
For example, in the Jupiter system, Io orbits Jupiter twice, for every one Europa orbit. Thus, Io
and Europa share a 2:1 resonance [6].

Resonance plays a key role in the stability and instability of orbiting bodies in our solar system.
The two most significant cases are the resonant interactions between Jupiter and the asteroids,
and the resonant interactions between Neptune and trans-Neptunian objects1. Firstly, there are
significant gaps in the distribution of asteroids located between Mars and Jupiter (as can be seen in
Fig. 1). The most noteworthy are those possessing small integer multiple resonances with Jupiter.
These are known as Kirkwood gaps. These gaps are formed by repeated perturbations from Jupiter
on orbit around the Sun. Overtime, the astroids which originally occupied those gaps are shifted
to a different orbit. Conversely, trans-Neptunian objects are repeatedly maintained in resonant

Date: 4 May 2018.
1Trans-Neptunian objects are Kuiper belt objects with a perihelion closer to the Sun than Neptune’s perihelion.
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FIGURE 1. Gaps in the asteroid belt caused by resonant perturbations from Jupiter.
Image from NASA.

bundles with Neptune through consistent interactions. This stablization prevents any possible close
encounters that these objects might have as they pass into Neptune’s orbit. Thus, both instability
(Jupiter moving asteroids out of a particular orbit) and stability (Neptune moving Kuiper belt
objects into a particular orbit) are both results of mean motion resonance.

2. MATHEMATICAL AND NUMERICAL METHODS

In order to better understand the interplay between resonance and stability (or instability) we
first need to look in the unlikely simplification of a pendulum. The phase space of a pendulum is
similar to a Poincaré section of the phase space of resonant planets [3]2. Investigation of trajectory
behaviour near separatrices leads to insight into the development of chaotic regions. And analysis
of the chaotic regions with Lyapunov exponents give quantitative results for the expectant stability
of planetary systems.

2.1. The Pendulum. Further insights and intuition of complicated planetary systems can be de-
veloped by comparisons to an ideal system with similar phase space properties — in this case a
basic pendulum [8]. In a general way, the dynamics of a simple system posses the local struc-
ture (or first order approximation) of the dynamics of a pendulum. This is done by averaging the
Hamiltonians of the three-body problem (a star with two planets) in the vicinity of the 3:1 and 2:1
mean-motion resonances and then reducing them to the Hamiltonian of a nonlinear pendulum with
periodic perturbations [9]. The phase space of a pendulum is described by the equations of motion
θ̈ = −µ sin(θ) and is shown in Fig. 2.

2Unfortunately, this often cited relationship is not straightforward to make and is not trivial to describe. Most of
the mathematical machinery which connects the two concepts was developed by Boris Chirikov [3], and was further
developed by Ivan Shevchenko [7].
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FIGURE 2. The phase space of a pendulum described by θ̈ = −µ sin(θ), with
µ = 1.5. The separatrices between the different phase space basins are show in red.

A linear stability analysis of the pendulum shown in Fig. 2 reveals that there are stable fixed
points at the centres of the red peaked ovals (0, 2π,−2π, ...) surrounded by orbital regions where
the pendulum librates around these fixed points. Additionally, there are unstable equilibrium points
at each tip of the red peaked ovals (π,−π, 3π, ...). The resonant regions are the libration regions
because only for librating orbits is the averaged time derivative of θ equal to zero [8]. Furthermore,
there are heteroclinic trajectories which go out from the unstable fix points and into the stable
manifold of an adjacent unstable fixed point.

These heteroclinic trajectories follow along separatrices. Consider then that while the motion of
a basic pendulum is deterministic and precisely predictable in the longterm, trajectories which lie
on or near the phase space separatrices can be relatively impossible to predict due to the sensitive
dependence on infinitesimal perturbations to its position or momentum.

2.2. Separatrices. Separatrices are phase space trajectories along the stable manifold of saddles
which form boundaries between adjacent basins in phase space [10]. In Fig. 2 these separatrices are
marked by the solid red lines. The separatrices in the phase space are crucial to developing insight
into the predictability of planetary systems. This is becuase the mechanism of the instability is
related to the transitions of the system from one resonance to another [3]. This transition inevitably
passes through a separatrix region.

In order to better understand how separatrix regions are the mechanism of instability, consider
two decoupled resonances (represented in Fig. 3). To obtain a better intuition, we will consider a
Poincaré section of the system. A Poincaré section is a two dimensional cross section of a three di-
mensional phase space [10]. With this in mind, first consider a Poincaré section of two resonances
which are sufficiently separated so that each is individually well approximated to first order (Fig. 3
(A)). In this case, we expect well behaved trajectories in most regions of space, perhaps with few
anomalies in the regions very near the separatrices (as in the pendulum approximation). However,
if there are two sufficiently strong resonances, which begin competing to determine the trajectories
in the same region of phase space, then significant phase space overlapping can occur (Fig. 3 (B)).
In this case, trajectories in these regions of space always lie near separatrix regions [8]. From
this brief argument, it may seem that the absence of an overlap of first order resonances provides a
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condition for planetary system stability. However, it is only a necessary but not sufficient condition
for stability. Indeed one may say also that the overlap criterion gives only an upper limit (in the
perturbation strength) for stability [3].
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FIGURE 3. Poincaré sections of decoupled resonances modelled as nonlinear pen-
dulums by {θ̇ = φ + ν, φ̇ = −µ sin(θ)}. Here the blue resonance has ν = 0 while
the red resonance has ν = 2π. When the resonances are well separated, the sin-
gle resonance approximations are reliable (A). However, when the resonant regions
overlap (B), the generation of chaos is expected [8].

Further analysis is required to understand the criteria for stability (or instability and chaos).
Even a dimensional reduction of the problem through a physical symmetry argument, such as
considering that most of the motion of planetary systems takes place within the orbital plane, is
insufficient to glean further details. Full numerical analysis can (and have) been done in order to
obtain further insights.

As a case example, consider the work done on the Miranda-Umbriel system3 by Mel’nikov and
Shevchenko [9]. They considered the resonant capture of these two moons by Uranus. They ran
multiple simulations with varying eccentricities representing the gradual capture of the two moons.
Their results are contained in Fig. 4 where a) has the lowest eccentricity (representing the moons’
current positions) and d) has the highest eccentricity (representing the moons’ initial capture). As
can be seen in their results, as more and more overlap between the two resonances occurs (due
to the more eccentric orbits), the regions surrounding the separatrices broaden and become truly
chaotic [9].

One of the numerical methods used to calculate the chaotic separatrix regions is a separatrix
map. This method was originally developed by Boris Chirikov [3] (who called it the whisker
map), and was further refined and renamed by Ivan Shevchenko [7]. The separatrix map, which in
a lot of ways is similar to the logistic map [10], provides a straightforward analytical description
of the phase space. Among other things, it also allows one to calculate the locations of resonances
and chaos boarders. With this tool, and a stability criteria which depends on separatrix regions,

3Miranda is the fifth moon of Uranus and Umbriel is the second moon of Uranus.
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The phase space sections of the Miranda–Umbriel
system for various epochs of its evolution were also
constructed in (Malhotra and Dermott, 1990; Figs. 6
and 15). However, they were constructed in an inade-
quate way because Malhotra and Dermott (1990) took
the angle φ moduli 2π, while, since the Hamiltonian of
the problem is 4π- (not 2π-) periodic in φ, the angle φ
should be taken moduli 4π. Consequently, only one res-
onance cell corresponding to the primary resonance is
present in the sections of (Malhotra and Dermott,
1990). This cell is a superposition of two different res-
onance cells.

Mimas–Tethys

Similarly to the case of the 3 : 1 mean-motion reso-
nance, if we confine ourselves to values of the second
order of smallness with respect to the eccentricities and
inclinations, six subresonances are present in the case
of the 2 : 1 mean-motion resonance (Champenois and
Vienne, 1999a, 1999b). According to (Champenois and
Vienne, 1999a, 1999b), the Saturnian satellites Mimas
(inner) and Tethys (outer) are now in the i1i2 4 : 2 incli-
nation-type resonance. As above, the subscripts 1 and 2
correspond here to the inner and outer satellite, respec-
tively. The resonance phase φ = 2λ1 – 4λ2 + Ω1 + Ω2
oscillates about 0° with an amplitude of !95° and a
period of about 70 years (Champenois and Vienne,
1999a, 1999b). Before capture in the current resonance,

Mimas and Tethys were captured in the  resonance,
from which they escaped after a short time (Champe-
nois and Vienne, 1999b).

Note that, in the context of the analysis of the ,

i1i2, and  resonances, the notation 4 : 2 is more justi-
fied than 2 : 1, because the mean longitudes of Mimas
λ1 and Tethys λ2 enter the expressions for the resonance
phase with coefficients 2 and 4 (see Champenois and
Vienne, 1999b). If the resonance multiplet in total or
the observed commensurability of orbital frequencies
are considered, we use the term 2 : 1 resonance.

Champenois and Vienne (1999b) demonstrated that
the resonances of higher orders in inclinations and
eccentricities, namely, the e2, i1i2e2, and e2 reso-
nances, strongly affect the dynamics in the i1i2 reso-
nance. Neglecting terms of order greater than three in
inclinations and eccentricities, the Hamiltonian of the
three-body problem (planet–two satellites) in the vicin-
ity of the 2 : 1 mean-motion resonance can be written in
the following approximate form (Champenois and
Vienne, 1999b):

(6)
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Fig. 1. Phase-space sections τ = 0 (mod2π) for the models presented in Table 1. (a)–(d) correspond to models 1–4, respectively.FIGURE 4. Poincaré sections of the phase space of the Miranda-Umbriel system
modelling increasing eccentricity (increasing from a to d) [9]. As there is more
overlap between the resonances, the chaotic regions broaden.

other tools, such as Lyapunov exponents and Lyapunov times, can be used to help determine the
stability (or instability) of planetary systems.

2.3. Lyapunov Exponents and Lyapunov Times. Lyapunov exponents are numbers which quan-
tify the sensitive dependance on the initial conditions of a dynamical system. They encapsulate
the relative impossibility of long-term prediction in these systems. The idea is to take two very
similar initial conditions in phase space and compare their relative separation as a function of
time [10]. In mathematical language we define |δ(0)| as the distance between the initial condi-
tions and |δ(t)| ≈ |δ(0)|eλt as the distance between the trajectories at time t. Thus, λ would be
the Lyapunov exponent characterizing the strength of chaos in a system. There are n Lyapunov
exponents in an n dimensional system, however it is customary to choose the largest exponent as
characteristic [10] [11].

One particular method for calculating the maximum Lyapunov characteristic exponent (MLCE),
λ, is to begin by finding the mean period of rotation of the model pendulum in the chaotic layer [9].
With this period we define η as the ratio of the perturbation frequency to the frequency of small
oscillations of the pendulum. Then, the most probable MLCE value is approximated by

(1) λ ≈ Ch
2η

1 + 2η
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where the constant Ch ≈ 0.80. While the essence of the calculation is straightforward, in more
complex systems one does need to take into consideration the asymmetric direct and retrograde
rotations, as well their dependance on the relative strength of the perturbation amplitude [9].

Once a characteristic Lyapunov exponent λ has been computed, its inverse is on the order of the
characteristic Lyapunov time tλ ≈ O(1/λ). In particular [10], if d represents the allowed drift4 in
our system and |δ(0)| is the uncertainty in the measured position of planets, then our prediction
power is limited to

(2) tλ ≈ O
(
1

λ
ln

d

|δ(0)|

)
.

While mathematically equivalent, the advantage of describing chaotic systems with Lyapunov
times rather than Lyapunov exponents is the intuition that is obtained because of our natural famil-
iarity with the units of time.

Lyapunov times provide a simple metric for estimating the stability of planetary systems and
assist in understanding whether or not we might expect planetary systems to be on the precipice of
collapse. The time scales of stability for many well known systems and newly discovered systems
have ranged greatly. For example, the time of practical stability of the solar system is on the
order of millions of years (5 × 106 yrs) [11], while analysis of some of the proposed exoplanet
systems is on the order of hundreds or thousands of years [1]. Other minor systems, such as the
Miranda-Umbriel system referenced to earlier, are predicted to be stable on the order of 50 to 100
years.

3. CONCLUSION

With the discovery of so many new exoplanetary systems it becomes imperative to consider
whether or not the proposed configurations are stable or even feasible. Our expectations that plan-
etary systems are likely to be stable on the order of stellar lifetimes (billions of years), imply that
proposed exoplanet systems with stability timescales of mere hundreds of years are either incor-
rectly described, or new explanations for their current configurations are needed [1].

Mean-motion resonance is often a characteristic of many body planetary systems which guides
our ability to determine the stability or instability of planetary systems. This resonance enables an
intuitive nonlinear pendulum approximation which allows us to focus our analysis on the chaotic
separatrix regions. These regions can be efficiently and effectively calculated using the separatrix
map. Within these regions characteristic Lyapunov exponents and Lyapunov times and be cal-
culated providing a intuitive metric for describing the expected stability (or instability) of these
systems.

While this method of calculating intuitive timescales is convenient, the approximations made
imply that the results are more of a guideline than an actual verdict. The other resonances alluded to
earlier, such as spin-orbit resonance and secular resonance also contribute to a system’s dynamics.
Fundamental frequency modulation based on changes in secular resonance can also add additional
insight and provides an additional metric for chaos. Additionally, in densely packed systems tides
and other general relativity effects may also need to be included in the analysis. Both now and
in the future, these methods will continue to assist in classifying and confirming the discovery of
many more exoplanet systems. [12]

4Drift in the sense that d represents the allowed tolerance of displacement from the supposed orbit.
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