# Order in Chaos: an Algorithmic Approach to Flocking Behaviour

Garett Brown and Manuel Berrondo

Department of Physics and Astronomy Brigham Young University

## Emergence

When orderly patterns arise out of the simple interactions of chaotic entities

#### Essential Flocking Elements

Communications (interactions)

Antagonistic behaviours (consensus and frustration)

Going beyond phase transitions



#### **Emergence in Flocking Behaviour**

- Adaptability
- Dynamic cohesion (evolving unity)
- Coherence
- Ostensive (directly demonstrate)
- Self-organisation
- "Beauty", "Harmony" (subjective)



# **Boid Flocking Model**

#### Local Rules determine Global Coherence

- Every boid has a constant speed v<sub>0</sub>
- Individual steering determined as an <u>average</u> of flock mate directions

#### **Two-Step Dynamics**

- Choose a small fixed number of flock mates for each boid
  - 1. Calculate the boid's steering averaging with its flock mates'
  - 2. Update all positions with a finite step, imposing boundary conditions

# Creating the Environment (2D)

 $\vec{\mathbf{v}}_i(t+1) = v_0 f_i(\hat{v}(t))$  $\vec{\mathbf{r}}_i(t+1) = \vec{\mathbf{r}}_i(t) + \vec{\mathbf{v}}_i(t+1)\Delta t$ 

- i = labels the boid
- t = labels the time step
- $f_i$  = average the velocity with flock mates at each time step
- Random starting positions
- Random starting directions







### **Steering Average Partners**







## Add Frustration

#### **Boundary conditions**

 The antagonistic forces of consensus and frustration take interactions beyond simple phase transitions

#### Emergence



## **Order Parameters**

a) Alignment Order Parameter (OP1)

$$\langle v(t) \rangle = \frac{1}{Nv_0} \left| \sum_{i=1}^{N} \vec{\mathbf{v}}_i(t) \right|$$

1 if all boids are aligned
0 if random or rotating

b) Rotational Order Parameter (OP2)

$$L(t) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z} \sum_{t=1}^{z} \frac{v_i(t) \wedge v_i(t+1)}{v_0^2}$$

N is the total number of boids

#### **Order Parameters and Phase Transitions**



### Summary



- Consensus comes from averaging velocities while frustration comes from boundary conditions
- Each time step averages the velocity with each boid's flock mates. Boundary conditions are taken into consideration
- The antagonism between the consensus and frustration creates the emergence