Beyond Phase Transitions: an Algorithmic Approach to Flocking Behavior

Garett Brown and Manuel Berrondo

Department of Physics and Astronomy Brigham Young University

Emergence

Essential Flocking Elements:

- Communications (interactions)
- Antagonistic behaviors (consensus and frustration)
- Going beyond phase transitions

Boid Flocking 2D Model

Two-Step Dynamics

- Constant speed v₀
 - 1. Average velocities while imposing frustration
 - Steering is a perturbed, average of flock mates
 - 2. Update positions

Creating the Environment (2D)

$$\vec{\mathbf{v}}_i(t+1) = v_0 f_i(\hat{v}(t))$$

$$\vec{\mathbf{r}}_i(t+1) = \vec{\mathbf{r}}_i(t) + \vec{\mathbf{v}}_i(t+1)\Delta t$$

- Random starting positions
- Random starting directions

Democratic but not reciprocal, 1 -> 2 does not imply 2 -> 1

Add Frustration

Add Frustration

Searching for Understanding

Directional Correlation

1: strongly correlated

-1: anti-correlated

 $C_i(t) = \frac{\mathbf{v}_i(t)}{v_i(t)} \cdot \frac{\mathbf{V}_n(t)}{V_n(t)}$

Individual Boid

Multiple Consecutive Boid Groups

Order Parameters and Phase Transitions

Directional Correlation by Observation

"Emergence of collective changes in travel direction of starling flocks from individual birds' fluctuations"A. Alessandro, A. Cavagna, et al.

Attanasi, Alessandro, Andrea Cavagna, Lorenzo Del Castello, Irene Giardina, Asja Jelic, Stefania Melillo, Leonardo Parisi, Oliver Pohl, Edward Shen, and Massimiliano Viale. "Emergence of collective changes in travel direction of starling flocks from individual birds' fluctuations." *Journal of The Royal Society Interface* 12, no. 108 (2015): 20150319.

Directional Correlation

Summary

- Simple model, rich behavior
- Velocity Averaging causes phases
- Frustration causes chaos
- A delicate balance between the two results in emergence.
- The results are similar to observations.

Order Parameters

Alignment Order Parameter

$$\langle v(t) \rangle = \frac{1}{Nv_0} \left| \sum_{i=1}^{N} \vec{\mathbf{v}}_i(t) \right|$$

1 if all boids are aligned
0 if random or rotating

Rotational Order Parameter

$$L(t) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{z} \sum_{t=1}^{z} \frac{v_i(t) \wedge v_i(t+1)}{v_0^2} \qquad \begin{array}{l} \text{Clockwise (-)} \\ \text{Counter-} \\ \text{Clockwise (+)} \end{array}$$

N is the total number of boids

Order Parameters

Velocity Correlation

W

$$C_i(t) = \frac{\mathbf{v}_i(t)}{v_i(t)} \cdot \frac{\mathbf{V}_n(t)}{V_n(t)}$$

1 : strongly correlated -1 : anti-correlated

where
$$\mathbf{V}_n(t) = \sum_{i=1}^n \mathbf{v}_i(t)$$

Order Parameters

Average Distance between flockmates

$$\mathbf{R}(t) = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{r}(t) - \mathbf{r}_i(t)|$$

Periodic Boundaries Aligned

Periodic Boundaries Clockwise

Periodic Boundaries Counter-Clockwise

Order Parameters and Phase Transitions

Previous Work

- Implemented frustration in the form of Boundary Conditions
 - U-turns and specular turns
 - "Soft basin" and "Rigid basin"
 - Square and Circular basins

Rigid Boundary: U-turn

Circle BC (t:481) 10 5 0 -5 -10 -5 5 Ö 10 -10

Rigid Boundary: Specular

Circle BC (t:742)

26

Specular

U-Turn

Circle

Circle

U-Turn

Circle

Square

No Boundaries

No Boundaries

Periodic Boundaries

